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Abstract. We have computed the vibrational densities of stat= (DOS) bqth of several ideal 
approximants of icosahedral quasicrystals, up to 13/8, and of an actual Al?oPda Mns icosahedral 
alloy. in the framework of the harmonic approximation. 

The dynamic matrix has been constructed for a spring potential in the cluster approximation. 
In order to compute the DOS we have used the continued-fraction expansion of the Greenk 
function and the coefficients of this expansion have been obtained with the recursive technique. 

The DOS of the 13/8 approximant is in agreement with the one already obtained in the 
literature. by using the commensurate approximation and the direct diagonalization. This strongly 
suggests that, provided the sire of the cluster is large enough, the two methods are equivalent. 
On thc other hand, recursive technique algorithms are much more convenient from the point of 
view of computing time. 

The Dos~camputed for the actual care of AlPdMn shows asatisfactory qualitative agreement 
with the neutron-weighted DOS. measured for the same compound. This is an interesting result, 
since it indicates that, in spite of the simple assumption adopted for the potential, the model 
describes quite well the main features of the vibrational spectrum of this quasicrystal. Further 
improvements in this direction can then be made. 

1. Introduction 

In the last decade several works have been devoted to the study of the vibrational properties 
of onedimensional quasicrystals. In contrast. very few works concerning two- and three- 
dimensional qiasicrystals have been performed so far. 

This striking difference is due to the fact that, in the one-dimensional case, it is possible 
to obtain the exact solution by using the renormalization-group analysis, while the same 
method cannot be straightforwardly applied to two- and three-dimensional cases. Beyond 
that, since this new class of ordered structures does not possess translational invariance, 
the direct diagonalization of the dynamic matrix, in the framework of a perfect harmonic 
theory, presents obvious difficulties of computation. For these reasons, other approaches 
than the direct diagonalization have been recently used to study such properties [14]. 

In the last few years, the interest in this subject has been also enhanced by the availability 
of new experimental measurements, pedormed on single grains of stable quasicrystals, like 
for example A170PdzlMn~ [5, 61. Thus a comparison between experimental and numerical 
results allows a significant check on the validity of the approximations introduced in the 
phenomenological models. This comparison will be carried out also in the present work. 
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In this paper we present a study of the total vibrational density of states (DOS) of 
icosahedral quasicrystals. For these structures, the standard method of direct diagonalization 
of the dynamic matrix requires a considerable amount of computer memory, even when 
one applies symmetry considerations [7]. To overcome this problem, we have used the 
continued-fraction expansion of the Green function with the recursion method [SI. This 
method allows us in fact to calculate the Green’s function matrix elements without passing 
through the diagonalization of the dynamic matrix. 

The recursion method is a very general mathematical tool, especially suitable for 
application when one has to deal with large sparse matrices. It has the advantage that 
no additional hypotheses (such as spatial periodicity) have to be satisfied by the operator to 
be tridiagonalized, so the procedure is strongly indicated in general cases in which traditional 
techniques are not applicable. In literature it has been already successfully employed in the 
calculation of electronic and vibrational properties of solids, either ordered or disordered 
[l-31, [9-111. 

In this paper we apply the recursion method to the calculation of the DOS, in the 
cluster approximation, of both several approximants of an ideal quasicrystal and an actual 
Al7oPdzlMng icosahedral alloy. 

The atomic positions of the ideal approximants have been computed with the section 
method. We have performed the DOS calculation for the ideal approximants up to a cell of 
about 45 000 atoms. The results agree with those of [7, 121, obtained by using the direct 
diagonalization and the commensurate approximation. This strongly suggests that, provided 
the size of the cluster is large enough, the recursive technique is a very good approximation 
of the direct diagonalization. On the other hand, by using the recursive technique, we have 
been able to study much larger systems. 

We also present results for the DOS, computed with the same technique, of a cluster 
of about 23 500 atoms, belonging to an actual Al70PdalMng icosahedral quasicrystal. The 
atomic positions of the actual quasicrystal have been extracted by the authors of [5 ] ,  by 
using the experimental data obtained by neutron and x-ray diffraction on a single grain of the 
perfect AlPdMn icosahedral phase. A satisfactory qualitative agreement is found between 
our result and the experimental DOS measured on the same icosahedral quasicrystal [6]. In 
this case, since the experimental data are neutron weighted, no quantitative comparison can 
be performed. However, all the features of the experimental spectrum are reproduced. We 
conclude that the theoretical model describes quite well the real quasicrystal behaviour, in 
spite of the simple form considered for the potential. 

In the following section the method used to generate the 3DPT and the construction of 
the dynamic matrix are briefly discussed. The third section describes the recursive technique 
used to obtain the coefficients of the continued-fraction expansion of the Green’s function. 
In the fourth section the results for the ideal quasicrystal approximants are shown and 
commented on. In the fifth section the recursive technique is applied to the case of an 
actual icosahedral quasicrystal, namely AIPdMn, and a comparison of the results with the 
experimental DOS for the same compound is carried out. 

2. Structure and dynamics 

In this section we briefly describe the main features of the ‘section method’ and the 
construction of the dynamic matrix. Since this method has already been used in the literature 
(see for example 171) we will not enter into details. 

To construct an ideal icosahedral quasicrystal, we consider a six-dimensional (6D) space 
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V~ divided into an ‘internal’ space Vj and an ‘external’ space V,: 

v = v; EB v,. (1) 
In the space V we choose a simple hypercubic lattice with basis vectors? 

al = (n. m, i n ,  m, o)/(-&) 

a2 = (-n, m, 0 , n, -m, O)/~&PT~&)  

The projection of the elementary cell of this lattice on the space Vi is a three-dimensional 
(3D) polyhedron, called a triacontahedron. On every point of the 6D hypercubic lattice 
we then place a triacontahedron, thus obtaining a 6D periodic Stlllcture (6DPS). If we now 
intersect this 6DPS with the subspace V, we obtain a particular geometrical array. By taking 
m and n as integers, this array can be shown to be periodic with a cubic celI edge T given 
bY 

~ T = & G F ) .  (3) 
In particular, if m f n  belongs to the Fibonacci sequence, then the may is called the 
m/n  cubic approximant of the ideal quasicrystal. In the limit in which m / n  goes to 

= ( I  + 8 ) / 2 ,  then an ideal quasicrystal with icosahedral symmetry and no periodicity 
is generated. 

In the ideal quasicrystal only two tiles occur: a prolate and an oblate rhombohedron. 
In the periodic approximation, more than two tiles occur, due to the deformation of the 
triacontahedron 171. 

Table 1. In the fint row the number of atoms N belonging to the e1ement.q cell are reported for 
various approximants of the ideal icosahedral quasicrystal, in the second row the corresponding 
number densities are shown. 

$k Ul 3/2 5/3 8/5 13/8 

N 167 631 2530 10595 44427 
P 5.281 4.760 4.512 4.461 4.416 

In table 1 we give the values of the numbers of atoms N belonging to the elementary 
cell and the corresponding number densities for various &-approximants. The values of N .  
are obtained by including all the opposite boundaries of the triacontahedron, to restore the 
tetrahedral plus inversion symmetry for the approximants. This procedure has been already 
adopted by the authors of [7]. In the case of the ideal icosahedral quasicrystals the density 
is 

= 4.3525.. . . . 4@Au(2@i, f 3@Au + 3) 
P =  (4) 

t All the distances between the atoms of the approximants are expressed in units of the hypercubic lauice spacing 
n = 1. 
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As can be seen from table 1, the density of the approximants is converging to the ideal 
density. 

Once we have obtained the quasilattice, the construction of the dynamic matrix is 
straightforward. 

A spring constant model bas been used for the forces [13]. In the following section we 
show how the dynamic matrix has been used in the framework of the recursive technique. 

A Cordelli and P Gullo 

3. Calculation of vibrational spectra of solids with the continued-fraction technique 

It can be shown [14] that the total DOS is related to the Green's function of the system by 
the equation 

where N is the number of states in the system and the U,' are the eigenvalues of the dynamic 
matrix. By using equation (5) the problem of computing the total DOS can be then reduced 
to the evaluation of the trace of the Green's function. 

Let us then consider a diagonal matrix element for G, given by 
Gm(02) = (UOI(W~I - D)-'luo) (6) 

where luo) is a state of interest for the dynamic matrix D. To evaluate the diagonal element 
of equation (6) we use the standard~three-term recurrence relations [8, IS], that reduce the 
dynamic matrix D into a tridiagonal form. Sming from the initial state lua) we generate a 
new basis {Is.)} and two sets of coefficients (a,) and (b i ) ,  with the fotlowing prescription: 

a n  = ( ~ n l D l ~ n )  

b,,, = w"+lIu"+l) 

lun+l) = ( D - ~ n M ~ n ) - b n I u n - ~ )  
2 1 

Iun+1) = --IU"+d A+I 
It is easy to show that, in terms of the [a.) and [b i } ,  the expression for the Green's function 
matrix element, Gm(02), is given by 

(7) 
I 

Gw(02) = 
2 b: o - a o -  

mz-a,  - b2' 
2 o -a2 -  '. 

where the number of coefficients of the continued-fraction expansion is equal to rank of the 
matrix G. The idea of the recursive technique is that, by using only a small number of these 
coefficients, it is possible to recomtruct the matrix element Gm with a good precision. 

The application of the recursion method to the study of vibrational properties of 
disordered or partially ordered systems 11-31 presents a number of advantages. A high 
degree of numerical accuracy can be achieved and directly controlled by appropriate stability 
tests. Furthermore, there is great improvement as regards computational speed and memory 
occupation over traditional methods which require direct diagonalization of the dynamic 
matrix. 

In order to obtain the total DOS the choice of the initial state of the recursion must be 
done carefully. The expression for the DOS, equation (S), contains in fact the trace of the 
Green's function. Every term of the form 

(8) 
1 -- Im[oG,,(o + io+)] 
H 
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is the projected DOS on a given state of interest for D. The trace of the Green's,function 
can be computed by using the following procedure [16]: let us choose as initial state of the 
recurrence 

where ([pi)] is a given set of basis functions and Ai are real random phases, i.e. they can 
assume, with the same probability, the values +1 or -1. With this choice, the matrix 
element of G diagonal on luo) is the sum of two contributions: 

Now, we see that the first term is just the average Green's function of equation (5)  that we 
want to compute, while the second one becomes vanishingly small as the number of states 
N increases, due to the product of uncorrelated phases. 

4. Total density of states for a 3DFT 

Let us now analyse the results obtained for the ideal quasicrystal approximants. In order to 
obtain the results presented in this section, we have used the same model as in [7]. except for 
the fact that there a direct diagonalization of the dynamic matrix was performed to compute 
the DOS up to the 5/3 approximant. while we used the recursive technique to compute the 
DOS up to the 1318 approximant. The results shown in this section are important to the 
understanding of to what extent the recursive technique is able to reproduce the results of 
the direct diagonalization. 

0.3 

m 
W 

3 0.2 
m 
E 
0 

G 
B 
m 

0.1 

0.0 

I " " I " " 1 " " -  

0 1 2 3 4 

FREQUENCY (arbitrary units) 
Figure 1. The vibrational density of stat- obtained with the recursive technique for 63 = S f 3  
(left) and for 64 = 8 / 5  (right) approximants. 
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The calculations were performed on a Vax 6000/410, a Vax 4000/200 and on an IBM- 
3090. On the IBM-3090 about two hours of CPU time have been used for computing the 
DOS for the biggest cluster. For the DOS presented in this section we used a spring potential 
with an atom placed at each vertex of the ideal lattice, with all the masses equal, all the 
spring constants equal and a cut-off radius of 0.8 units of hypercubic lattice spacing for the 
interactions. This distance represents the shortest cut-off distance, on the three-dimensional 
lattice, necessary to have all the atoms linked to at least one neighbour. This particular 
choice reproduces the same results as were obtained in [7] (figures 2 and 3) with the direct 
diagonalization. 

>. 

z w a 

E m 

FREQUENCY (arbitrary units) 

Fiyre 2. The vibrationat density of states obtained for the $5 = 1318 approximant. For this 
result 150 coefhcienu of the continued-haion expansion and an imaginary part of 0.02 have 
been used. 

The dynamic matrix has been stored with a sparse-matrix storage algorithm. To test the 
accuracy of the calculation we have monitored the scalar product between the nth state of 
the recursion and the initial state [17]. The continued-fraction expansion has been simply 
truncated when this orthogonality is no longer satisfied. 

No difference has been found between the double- and the quadruple-precision 
calculations. Moreover, a comparison between calculations performed with different 
numbers of continued-fraction coefficients shows that the asymptotic region has been 
reached. 

In figures 1 and 2 the DOS obtained for $3 = 5/3,$4 = 8/5 and 45 = 13/8 respectively 
are shown. The corresponding numbers of atoms of the elementary cell are those reported in 
table 1. Before losing numerical stability it has been possible to calculate with the recursive 
technique 150 coefficients of the continued-fraction expansion for the 13/8 approximant. 
We notice that the DOS with c#q = 5/3, figure 1, already looks quite similar to that of 
figure 2, with $5 = 13/8. In the case of AlMn it has been shown [4] that no substantial 
difference arises between the DOS of the $5 = 13/8 approximant and the DOS of the further 
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m w 
E 
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.FREQUENCY (arbitrary units)  

Figure 3. As in figure 4, but with a log-log scale IO display the 10w-o~ behaviour. A linear 
interpolation has give. a coefficient of 2.0 for the lower frequencies (from 0.15 up lo the value 
1.85 of the arbitrary scale). 

approximant, i.e. 46 = 21/13. 
In figure 3 the same DOS as in figure 2 is shown in a log-log scale, to display better 

the low-w behaviour. A quite good &behaviour is found, except for in the very low part 
of the spectrum. A linear interpolation has been done for the log-log data of the 1318 
approximant of figure 3. For the lower frequencies, up to the value 0.15 of the arbitrary 
scale, a coefficient of 1.6 has been found. For the frequencies in the range extending from 
0.15 to 1.85 a coefficient of 2.0 has been found. This is in agreement with the results of 

It is noticeable that in the cluster approximation further sparing of memory is obtained 
with respect to the commensurate approximation (the dynamic matrix being real instead of 
complex), and the DOS that we obtained is identical to the one obtained, within the latter 
approximation, by Los and Janssen for the 5/3 approximant as a pioneering result [7]. The 
results presented so far, though they do not add anything new to the knowledge of the 
total DOS of an ideal quasicrystal, are still important because they show that the recursive 
technique is capable of reproducing well the results of an exact cdculation. 

In the next section we present the results obtained in the framework of the cluster 
approximation, with the same technique, for a real quasicrystalline sample. 

[W. 

5. Total density of states for AlPdMn 

In this section we present the results obtained for the A170PdzlMng icosahedral phase. 
The atomic positions that we used have been determined with x-ray and neutron diffraction 
investigation performed on a perfect single grain [5]. For the calculation of the DOS we used 
a spring potential with all the springs equal. A cut-off distance of 4.6 A for the interactions 
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has been also introduced. This distance corresponds to the radius of the first-order pseudo- 
Mackay icosahedron [5, 191. In the calculation of the dynamic matrix we have used the 
physical values of the atomic masses. Thus, by applying the same method as illustrated in 
the previous sections, we obtained the DOS of figure 4, for a box of I00 x 100 x 100 A3. 
The box contains 23 514 atoms, namely 16 478 AI, 4928 Pd and 2108 Mn. Also, in this 
case, the asymptotic region has been reached before the system loses numerical stability and 
the DOS of figure 4 has been obtained by using 300 coefficients in the continued-fraction 
expansion of equation (7). 

A Cordelli and P Gull0 

FREQUENCY (arbitrary units) 

Figure 4. The vibrational density of states obtained with the recursive technique for an 
Al7oPd21Mng quasicrystal. For this result 300 coefficients of the continued-fraction expansion 
and an imaginary part of 0.02 have been used. 

The specmm of figure 4 shows two main broad bands with a quite relevant depression 
in the middle. A third band might exist in this pseudogap. Tbese features have been found 
experimentally for the same compound [6]. To compare theoretical and experimental results, 
we report in figure 5 the neutron measuremens of the generalized vibrational density of 
states, published in [6]. The low-frequency part of the spectrum has not been experimentally 
investigated since the presence of Mn adds intensity in the quasielastic region. Thus, it is not 
possible to have an experimental counterpart for the shoulder appearing at low frequency. 
On the other hand, this rather peculiar behaviour of the low-frequency part of the spectrum 
needs a more realistic model to be definitively proved, since no direct physical interpretation 
has been available up to now. Further improvements of the calculation are in progress. 

The two bands appearing in the DOS are likely to arise because of the presence of 
atoms with different masses. We observe, in fact, that the neutron-weighted DOS of the 
AlMn quasicrystal is single banded with no pseudogaps, as results from both theoretical 
calculations of [4] and the experimental measurements of [20]. Thus, the splitting of the 
band appearing in figure 4 and in figure 5 is likely generated by the presence of a very 
heavy species, namely the Pd, with lower concentration with respect to the lighter ones, 
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Figure 5. The experimental neutron-weighted vibrational density of stares for an AlaMnztPdg 
icosahedrd single grain. 
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the AI and the Mn. A similar behaviour can he found in random crystals, i.e. for perfect 
crystalline lattices where mass disorder has been introduced [21]. This consideration is also 
supported by the following argument: the ratio of the resonant frequencies of the harmonic 
oscillators of AI and Pd, provided that all the force constants are considered to be equal, 
is w~, /u$, ,  = &/& = 1.99. Now, we observe that the ratios of the frequencies 
corresponding to the two maxima of the experimental and the computed spectra (figures 4 
and 5) are both approximately equal to 1.9. This can be interpreted as a signature of the 
independent oscillations of the two sublattices. If this assumption is correct, the introduction 
of a realistic force constant is not expected to modify the shape of the specmm significantly. 

6. Conclusions 

In this paper we have studied the vibrational density of states of three-dimensional 
icosahedral quasicrystals, using the continued-fraction formalism and the cluster 
approximation. We have considered two kinds of lattice: in the first case a model system, 
i.e. commensurate approximants of an ideal icosahedral quasicrystal generated with the 
section method; in the second case an actual AlPdMn single grain in its icosahedral phase, 
for which the atomic positions have been extracted from experimental data [5]. 

The results we have obtained are very promising, though various approximations have 
been introduced. Our result for the DOS of the ideal approximants agree very well with 
those obtained in [7], by a direct diagonalization of the dynamic matrix. Moreover, there is 
a satisfactory qualitative agreement between the DOS we computed for the AlPdMn single 
-&n and the neutron-weighted total density of states measured for the same compound [6]. 

Further improvements are in progress: in particular, for actual systems like AlPdMn 
the introduction of realistic force constants, or, even better, the choice of more appropriate 
interatomic potentials other than a simple spring model, may give more quantitative results. 
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